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Abstract—In this paper, we proposed a novel semi-supervised
learning algorithm, named passive-aggressive semi-supervised
learner, which consists of the concepts of passive-aggressive,
down-weighting, and multi-view scheme. Our approach performs
the labeling and training procedures iteratively. In labeling
procedure, we use two views, known as teacher’s classifiers for
consensus training to obtain a set of guessed labeled points.
In training procedure, we use the idea of down-weighting to
retrain the third view, i.e., student’s classifier by the given
initial labeled and guessed labeled points. Based on the idea
of passive-aggressive algorithm, we would also like the new
retrained classifier to be held as near as possible to the original
classifier produced by the initial labeled data. The experiment
results showed that our method only uses a small portion of the
labeled training data points, but its test accuracy is comparable
to the pure supervised learning scheme that uses all the labeled
data points for training.

Index Terms—passive-aggressive; down-weighting; co-training;
consensus training; incremental reduced support vector machine;
multi-view; reduced set.

I. INTRODUCTION

Beyond what the supervised learning can offer, many real

applications need to deal with both labeled and unlabeled data

simultaneously1, such as text mining, bioinformatics, computer

vision, and image retrieval [1], [2]. Usually, the amount of

labeled data is insufficient and obtaining it is expensive.

In contrast, unlabeled data is abundant and easy to collect.

For example, we may need to categorize a number of web

documents, but only a few of them may be correctly labeled.

In another example, determining the functions of biological

strings is expensive, and only a small portion of them have

been studied (labeled) to date. Semi-supervised learning (SSL)

can help researchers deal with these kinds of problems because

it takes advantage of knowing two kinds of data; 1) it uses

labeled data to identify the decision boundary between data

1In fact, the input of a regular supervised classification actually takes a
labeled data set and several fresh data without the class information for
prediction, which can be considered as an SSL problem where a transductive
learning method can be the solution.

with different labels; and 2) it uses unlabeled data to determine

the data’s density, i.e., the data metric.

In this paper, we proposed a novel SSL algorithm, named

passive-aggressive semi-supervised learner (PASL). The pro-

posed method combines the concepts of passive-aggressive

(PA) algorithm [3] in part and down-weighting with our multi-

view learning framework.

The PA algorithm [3] is a margin based learning scheme,

which is often used for on-line learning. On one hand, the on-

line PA algorithm modifies the current classifier to correctly

classify the current example by updating the weight vector.

On the other, the new classifier must remain as close as

possible to the current classifier. Similar to the scenario of

on-line learning, SSL uses both labeled and unlabeled data to

improve prediction performance and simultaneously we would

like the new generated SSL classifier to be held as near as

possible to the original classifier produced by the labeled data.

Based on this idea, the PA algorithm is used to deal with

the SSL problem. Formally, in our method, we add the term
1
2‖w−wL‖2

2 into the objective function of the standard SVMs,

where w is the normal to the new classifier and wL is the

normal to the original classifier built for the labeled data.

In most SSL method, we need to directly or indirectly label

the unlabeled data to form the final classifier. However, in most

cases, we are not sure whether the guessed labeled data have

the correct label information. Hence, to reduce the effect that

the wrongly guessed labeled points join the training procedure,

we consider how to separate the influence of the guessed

labeled data from the effect of the given initial labeled points.

This goal can be achieved by introducing the concept of down-

weighting. In our approach, we give higher penalty weight to

the initial labeled points if they are misclassified in training

procedure. In contrast, we give lower penalty weight to the

guessed labeled points.

Our approach is based on a multi-view framework. Among

the various SSL algorithms that have been proposed, the

multi-view method is one of the most widely used approach.
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It splits data attributes into several attribute subsets, called

views, to improve the learning performance. In the co-training
algorithm [4], classifiers of different views learn about the

decision boundaries from each other. On the other hand, the

classifiers of different views can be combined to form an

ensemble classifier with a high level of confidence. We call this

approach consensus training. Our scheme is based on these

two concepts. Moreover, in contrast to existing approaches,

we propose a method that selects multi-views in the feature

space rather than in the input space, borrowing the language

of the support vector machines (SVMs) [5]. Technically, we

apply the RSVM algorithm [6], [7] to select different views

to realize the proposed algorithm.
Under the PASL, given three views, the classification an-

swers from two classifiers (two teachers) represent the consen-

sus result, which is used to teach the third view (the student) to

learn the labels for unlabeled data. This process is performed

for each choice of teachers-student combination. After the

student learns the data, the newly learned labeled data are

added to the student’s original labeled data set, as the set

of guessed labeled data and they are included for training in

the next step if it is part of the teachers’ sets in the next

step. The whole process is run iteratively and alternately until

some stopping criteria are satisfied. Clearly, the combination

of teachers and students can be generalized to the set of more

than three views.
In principle, most co-training algorithms prefer views that

are “not too similar” to each other, given the class information.

Traditionally, given the class information, researchers assume

the conditional independence between different views [1].

In the language of generative modeling, different views are

generated independently given the class label. PASL differs

from those co-training algorithms in that we choose views that

are not linearly dependent on each other. Second, we choose

teachers with consensus answers as the guessed labels for the

next step of the iteration.
Another difference of proposed PASL is that the whole

framework is based on RSVM [6], [7]. To overcome the

computational complexity of SVMs, we usually rely on a small

size approximation of the inner product matrix AA′ or the

kernel matrix K(A,A) in the nonlinear case, given the data

matrix A and its transpose A′. RSVM chooses several columns

of the kernel matrix as the approximation, namely the inner

products on the reduced set. Theoretically, choosing reduced

sets means choosing partial attribute sets in the feature space.

For SSL, we use RSVM to select different views in the feature

space, not in the input space. That is, we treat the reduced

sets as different views in the feature space. Initially, we use

different reduced sets in turn as well as the limited labeled set

as the data sets to build three classifiers that represent three

different views. The key point is that label information is not

required in the selection process of the reduced set. Then,

based on the two of the three classifiers (the teachers), some

unlabeled data are marked if the teachers form a consensus

answer, and those data are considered as the newly acquired

labeled set for training the remaining classifier (the student).

Ideally, most data points are successfully labeled as if we have

additional labeled data for training in the next run. We continue

the above “teaching” work for all classifier combinations2.

The experiments include comparison of training and pre-

diction using either a limited labeled set or the full labeled

set. Before discussing our method in detail, we introduce the

notations used in this work.

Notations and Problem Setting
By convention, we let v denote a column vector and v′

denote a row vector. By the matrix formulation, let A ∈ R
m×n

be the input attribute set; and let each row of A, denoted by

Ai, represent observation xi. We use the terms < xi, xj >
and x′

ixj interchangeably to denote the inner product of any

two vectors xi and xj . The p-norm of x will be denoted by

‖x‖p. A column vector of ones of arbitrary dimension will be

denoted by bold-face 1. The base of the natural logarithm will

be denoted by e.

For an SSL problem, we consider an input data set D,

which consists of labeled and unlabeled data. The labeled

part is the set DL := {(x1, y1), . . . , (xi, yi), . . . , (x�, y�)} ⊆
R

n × R, where each pair (xi, yi) is an observation xi =
(xi

1, x
i
2, . . . , x

i
n) ∈ R

n with its response or class label yi. The

unlabeled part is the set DU := {x�+1, . . . , x(�+u)=m} ⊆ R
n.

In most cases, we are interested in the SSL problem when

� � u. For the labeled set, Y = (y1, . . . , y�)′ ∈ {−1, 1}� is

the column vector of the corresponding responses in the case

of a binary classification problem. For the guessed labeled set,

Ŷ = (ŷ1, . . . , ŷg)′ ∈ {−1, 1}g is the column vector of the

corresponding responses in the case of a binary classification

problem. An input attribute subset in the space R
n is called a

view. A classifier can work on such a view for prediction,

and the results from many views can be combined by a

“voting” scheme for multi-view learning. When a feature space

is considered, e.g., for a problem with nonlinear decision

boundaries, a view is a subset of attributes in the feature space,

not in the input space. That is, a view is the subset of bases

in the functional space.

The remainder of the paper is organized as follows. Sec-

tion II provides the concepts of PA and down-weighting that

are used for PASL. In Section III, we introduce the framework

of our method, including RSVM and the proposed PASL
algorithm. Section IV describes the numerical experiments

2Three choices for the case of two teachers and one student.
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and details the results. Section V contains some concluding

remarks.

II. TWO CONCEPTS FOR PASL

The proposed PASL is a PA-like multi-view SSL algorithm.

In our approach, we blend the concepts of PA [3] and down-

weighting into our multi-view learning framework.

A. The Concept of Passive-Aggressive Algorithm

The PA algorithm [3] is a margin-based learning algorithm,

which is often used in on-line learning. On one hand, the on-

line PA algorithm [3] modifies the current classifier wt + b in

order to correctly classify the current example xt by updating

the weight vector from wt to wt+1. On the other, the new

classifier wt+1 + b must be as close as possible to the current

classifier wt + b.

Our method for SSL is inspired in part by the above idea

of PA. A typical SSL method directly or indirectly labels

the unlabeled data as accurate as possible and combines the

labeled data to form a classifier. Inspired by the idea of PA,

we train the classifier in a on-line fashion, and in each step

of on-line training, we would like the newly generated SSL

classifier w+b to be as close as possible to the classifier wL+b
produced by using only the labeled data. Hence, the concepts

of PA could be introduced for dealing with the SSL problem.

To achieve this purpose, we add the term 1
2‖w−wL‖2

2 into

the objective function of the standard SVM and the standard

SVM will be reformulated as:

min
(w,b,ξ)

C1′ξ + 1
2‖w‖2

2 + 1
2‖w − wL‖2

2

s.t. D(Aw + 1b) + ξ ≥ 1,
ξ ≥ 0,

(1)

where the components of vector ξ in problem (1) are slack

variables, and C is a penalty parameter. We use an diagonal

matrix D,Dii = yi to specify the membership of each input

point.

The objective function of (1) can be further simplified as

follows:

C1′ξ + 1
2‖w‖2

2 + 1
2‖w − wL‖2

2

= C1′ξ + 1
2‖w‖2

2 + 1
2‖w‖2

2 + 1
2‖wL‖2

2 − <w, wL>

= C1′ξ + ‖w‖2
2 + 1

2‖wL‖2
2 − <w, wL>

(2)

Then, the standard SVM could be reformulated as:

min
(w,b,ξ)

C1′ξ + ‖w‖2
2 + 1

2‖wL‖2
2 − <w, wL>

s.t. D(Aw + 1b) + ξ ≥ 1,
ξ ≥ 0.

(3)

Because the term 1
2‖wL‖2

2 is a constant, the problem (3) is

equivalent to the formulation below:

min
(w,b,ξ)

C1′ξ + 1
2‖w‖2

2 − CPA <w, wL>

s.t. D(Aw + 1b) + ξ ≥ 1,
ξ ≥ 0,

(4)

where CPA in problem (4) is a weight parameter used for the

trade-off between maximizing the margin 1
‖w‖2

and generating

a new classifier close to the original classifier.

B. The Technique of Down-weighting

As mentioned above, the guessed labeled points will join the

training set to refine the current classifier. However, we do not

know whether the guessed labeled data are labeled correctly.

Therefore, in our scheme, we also consider how to separate

the influence of the guessed labeled data from the effect of

the given initial labeled points. This goal could be achieved

by using the technique of down-weighting.

In our approach, we give large penalty weight to the initial

labeled points if they are misclassified in training procedure

because their labels are explicitly known. The penalty weight

of the guessed labeled points is given lower than the one of

the initial labeled data because the correctness of the guessed

labels information are not certain. Hence, the problem (4)

could be rewritten as:

min
(w,b,ξL,ξG)

CL1′ξL + CG1′ξG + 1
2‖w‖2

2 − CPA <w, wL>

s.t. DL(ALw + 1b) + ξL ≥ 1,
DG(AGw + 1b) + ξG ≥ 1,
ξL, ξG ≥ 0,

(5)

where the components of vectors ξL and ξG in problem (5)

are slack variables for the initial labeled and the guessed

labeled points, respectively; also, the parameters CL and CG

are penalty weights of the initial labeled and the guessed

labeled data respectively. The diagonal matrix DL, DLii = yi

and DG, DGii = ŷi are to specify the membership of each

input initial labeled and guessed labeled point, respectively.

In the rest of this paper, we will use the modified SVM model

(5) for our SSL work.

III. THE FRAMEWORK OF PASSIVE-AGGRESSIVE

SEMI-SUPERVISED LEARNING

Our method is built on an alternately labeling and training

procedure. Given the initial labeled data, we try to label the

remaining unlabeled data and use both of labeled and the

guessed labeled data for training in the next run. Being a

multi-view approach, PASL is built on the RSVM framework,

where each reduced set serves as a view in the feature space

for semi-supervised learning3.

3We give only a brief description of RSVM. Please refer to [6] for all the
details.
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A. RSVM and Reduced Sets for Multi-view Learning

For supervised learning problems, the SVM is one of the

most promising algorithms. Taking advantage of the so-called

kernel trick, the nonlinear SVM classifier is formulated as

follows:

f(x) =
m∑

j=1

ujk(x, xj) + b , (6)

where k(x, xj) is a kernel function that represents the inner

product of the images of x and xj in the feature space under a

certain nonlinear mapping that we do not need to know explic-

itly. For convenience, we use the terms “kernel function” and

“basis function” interchangeably in this paper. A kernel matrix

K(A,A) is defined as K(A,A)ij = k(Ai, Aj), which records

all the pairwise inner products (or similarities) of instances

in the feature space. The nonlinear SVM classifier is a linear

combination of the basis functions, {1} ∪ {k(·, Aj)}m
j=1. For

the linear SVM, the kernel function is defined as k(x, z) = x′z
and K(A,A) = AA′. In this paper, we use the radial basis

function (RBF) kernel, defined as

k(x, z) = e−μ‖x−z‖2
2 , (7)

where μ is the width parameter. A kernel with larger value of

μ tends to fit to the training data better; however, it may lead

to overfitting. The coefficients uj and b in (6) are determined

by solving a quadratic programming problem [5], [8] or an

unconstrained minimization problem [9].

Solving the problems with large amounts of data is compu-

tationally difficult because it is necessary to deal with a fully

dense nonlinear kernel matrix in the optimization problem. To

resolve difficulties, some authors have proposed applying low-

rank approximation to the full kernel matrix [10], [11]. As

an alternative, the reduced support vector machine (RSVM)

was proposed in [6]. RSVM’s operations can be divided into

two steps. First, it randomly selects a small subset of bases

{k(·, Ã1), k(·, Ã2), · · · , k(·, Ãm̃)} from the full4 data bases

{k(·, Aj)}m
j=1 to build a separating surface prior to training. In

contrast to conventional SVMs, RSVM replaces the fully dense

square kernel matrix with a small rectangular kernel matrix,

which is used in the nonlinear SVM formulation to avoid

the above-mentioned computational difficulties. In the second

step, RSVM determines the best coefficients of the selected

kernel functions by solving the unconstrained minimization

problem. It considers the entire data set, so the surface will

adapt to all the data. Hence, even though RSVM only uses a

small portion of the kernel bases, it can still retain most of

the relevant pattern information in the entire training set. A

statistical theory that supports RSVM can be found in [7].

4It includes both of the labeled and unlabeled data in SSL. Also, no class
information is necessary for this construction.

Next, we discuss the roles of the reduced sets K(A, Ãj) ∈
R

m×1 as different views in our multi-view algorithm. The

value of K(A, Ãj) can be interpreted as the similarity between

all of the training examples and Ãj . Likewise, the rectangular

kernel matrix, which is generated by a reduced set, records

the similarity between the entire training set and the reduced

set. Ideally, to be effective as a set of kernel bases, the

selected kernel functions should not be “too similar” to each

other; or, more rigorously, there should be “some degree” of

linear independence between them. For a regular supervised

learning problem, a reduced set with a higher degree of

linear independence between its elements ensures a better

classification result. Similarly, when more than one view or

more than one reduced set is involved in an SSL problem,

we prefer the views or the sets to be linearly independent

of each other numerically. This suggests that, in the semi-

supervised case, views (reduced sets) with more linear in-

dependence between them are less likely to have a uniform

predicted result; therefore, they give a result of high confidence

when they agree. There are various algorithms for selecting a

representative reduced set with dissimilar elements, e.g., those

proposed in [12], [13]. In our SSL application, we choose a

set of multi-view partners or reduced kernel matrices that are

linearly independent of each other. Note that our selection

procedure considers both labeled and unlabeled data points.

B. View Selection

As mentioned in Section III-A, an RSVM classifier can

be represented as a linear combination of the selected kernel
functions for the corresponding randomly selected reduced

set. To meet our requirements, the selected kernel functions

should have low similarity, i.e., there should be high mutual

(linear) independence between them. Next, we describe our

mechanism for generating three reduced sets5 or views, which

will take turns to play the roles of teacher and student in

our PASL algorithm. The choice of reduced sets can be very

flexible [12], [13]. We can use IRSVM [12] to generate all

three views because it guarantees dissimilar basis functions

as the representatives (Please refer to [12] for all the details.).

We repeat the IRSVM procedure until some stopping criteria

are satisfied. In this paper, we stop the algorithm when we

have enough reduced points to form a candidate set. We then

divide the set into three parts, each of which forms a reduced

set that plays a view or role in the PASL algorithm.

The detailed procedure for generating the three reduced

sets is as follows. Suppose we want a reduced set whose

size is equal to m̃. In this case, we repeat the IRSVM

procedure until the number of reduced points is equal to 3m̃.

5Again, a number of more than three reduced sets should be easy to
generalize.
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Let Ã3m̃ be the set of 3m̃ reduced points, which we split

into three subsets (views) through a round-robin (interleav-

ing) partition method called B̃m̃, C̃m̃, and D̃m̃. Based on

the IRSVM algorithm, it is clear that the three subsets of

bases, {k(·, B̃j)}m̃
j=1, {k(·, C̃j)}m̃

j=1, and {k(·, D̃j)}m̃
j=1 are

mutually exclusive. Since the column spaces of K(A, B̃m̃),
K(A, C̃m̃), and K(A, D̃m̃), denoted by CS(K(A, B̃m̃)),
CS(K(A, C̃m̃)), and CS(K(A, D̃m̃)), are spanned by the

above three mutually exclusive basis functions, respectively.

Thus these hypothesis spaces are orthogonal, and for any two

distinct views Vi,Vj ∈ {B̃m̃, C̃m̃, D̃m̃}, we have

CS(K(A,Vi)) ∩ CS(K(A,Vj)) = {0}. (8)

Therefore, all the columns of the kernel matrices generated

by these three reduced sets (views) are linearly independent

of each other. Intuitively, views selected in this manner are

likely to suggest labels “independently” for unlabeled data;

hence, there is a high level of confidence when they agree on

an answer.

C. The Multi-view Learning for PASL

In this subsection, we introduce the PASL algorithm for

iterative labeling and training. This approach is inspired in

part by the well-known co-training method [4] for SSL. The

co-training method can help us to teach other views to label

the unlabeled data, if the two views are not very similar to

each other. In addition, more views can help us obtain a better

result. That is, we will have more confidence if more views

are provided for relatively “independent” predictions. This is

called consensus training. We combine these two methods, co-

training and consensus training, to form the PASL algorithm.

In the labeling step, two teachers from two views are consulted

to find a confident result, which is used to label, i.e., to

teach the third view (the student) to guess the labels of the

unlabeled data. This step is performed on each teachers-student

combination. At the end of the process, we have the guessed

label information for many of the unlabeled data. We repeat the

“teaching” step until the student classifier can not “learn” any

more from the two teacher classifiers. That is, we repeat the

above procedure to label the unlabeled data until the labeled

part makes no more, or very few, changes. We then use all

the labeled data to build the final classifier, which is used

for making predictions on the unseen data. We describe the

complete PASL algorithm formally in Algorithm 1.

IV. EXPERIMENT RESULTS

To demonstrate the performance of the PASL algorithm,

we test it on four publicly available data sets from the UCI

machine learning repository [14]. Table I summarizes the

statistics of the data sets. While most of the data sets are

for regular supervised learning, in each data set, we choose

Algorithm 1: The PASL Algorithm

Input:
Initial labeled data DL={(xi, yi)}�

i=1, xi ∈ R
n, yi ∈ {−1, 1}.

Initial unlabeled data DU ={(xi)}m=�+u
i=�+1 , xi ∈ R

n.

Initial classifiers f1(x), f2(x), f3(x).

Output:
The final discriminant model f(x).

DLi ← DL, i = 1, . . . , 3.1
iter ← 1.2

D(0)
L ← DL.3

repeat4
for i ← 1 to 3 do5

for j ← 1 to u do6
t1 ← mod(i − 1, 3) + 17
t2 ← mod(i, 3) + 18
s ← mod(i + 1, 3) + 19
if (ft1(xj) > 0 and ft2(xj) > 0) or10

(ft1(xj) < 0 and ft2(xj) < 0)11
then12

DLs ← DLs ∪ xj13
DL ← DL ∪ xj14
DU ← DU \ xj15

end16
end17
Retrain the classifier fs(x) with DLs .18

end19

D(iter)
L ← DL.20

iter ← iter + 1.21

until D(iter)
L = D(iter−1)

L22
Construct an RSVM classifier f(x) with the final labeled data23
set DL.
Return f(x).24

TABLE I
THE STATISTICS OF THE DATA SETS USED IN THE EXPERIMENTS.

Data Set Description
Data Set Instance Feature Reduced Set Size
Ionosphere 351 34 35
Cleveland Heart 297 13 30
BUPA Liver 345 6 35
Pima Indians 768 8 50

part of the labeled data to hide the label information to

obtain unlabeled data. We study the performance with different

percentages of labeled data with their labels kept for semi-

supervised training.

As mentioned in the previous section, we use the

IRSVM [12] procedure in our experiments to generate three

views for our teachers-student combination. The sizes of the

reduced sets used in all the experiments are also summarized

in Table I. We use Gaussian kernel functions for RSVM
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TABLE II
THE AVERAGE CPU TIMES OF THE PASL ALGORITHM ON FOUR PUBLIC

DATA SETS USING 20%, 30%, 40%, AND 50% OF THE TRAINING SET AS

LABELED DATA.

CPU Time ± Std (sec)
Data Set 20% 30% 40% 50%
Ionosphere 2.51±0.10 2.45±0.08 2.47±0.05 2.50±0.10
Cleveland Heart 0.19±0.02 0.18±0.01 0.19±0.02 0.19±0.01
BUPA Liver 3.48±0.18 3.47±0.21 3.54±0.20 3.54±0.13
Pima Indians 14.43±0.93 14.63±0.90 14.79±1.03 15.05±1.09

and IRSVM in all the experiments. Besides, we adopt the

nested uniform design (UD) model selection method [15] to

select the penalty parameter C and the Gaussian kernel width

parameter μ for RSVM. To evaluate the performance of PASL,

we compare with that of the pure supervised learning scheme

under the same setting. We ran tenfold cross-validation 30
times on each data set. For each fold, we randomly selected

20%, 30%, 40%, or 50% of the data points from the training

set as labeled data and treated the remainder as unlabeled data.

In the following evaluation, we use the terms training set
accuracy and transductive accuracy interchangeably to denote

the classification accuracy on the training set, which consists

of the estimated labeled examples from the unlabeled set

DU and the original given labeled examples from DL (class

information included). The term labeled set accuracy denotes

the classification accuracy on the original given labeled set

DL; while test set accuracy or inductive accuracy denotes the

classification accuracy on the fresh test set, which was not

seen before the training commenced.

We summarize the numerical results and comparisons of

the experiments in Tables II to V. The CPU times required to

implement PASL in the experiments and the average number

of iterations of PASL are demonstrated in Table II and III,

respectively. The numerical results show that although our

method needs to retrain iteratively, the time cost is still

acceptable and the average number of iterations are quite

small.

Table IV compares the average test accuracy of the PASL
and the pure supervised learning scheme. The PASL algorithm

only uses a small portion of the labeled training data points,

but its test accuracy is comparable to the pure supervised

learning scheme that uses all the labeled data points for

training. The test accuracy of the pure supervised learning

classifiers generated by 20%, 30%, 40%, and 50% of the

training labeled data points was lower than the test accuracy

of the classifiers built by PASL.

Table V details the average training accuracy and the aver-

age numbers of final labeled points for PASL based on ten-fold

TABLE III
THE AVERAGE NUMBER OF ITERATIONS OF THE PASL ALGORITHM ON

FOUR PUBLIC DATA SETS USING 20%, 30%, 40%, AND 50% OF THE

TRAINING SET AS LABELED DATA.

The Number of Iterations ± Std (%)
Data Set 20% 30% 40% 50%
Ionosphere 2.12±0.17 2.13±0.19 2.04±0.07 2.02±0.06
Cleveland Heart 2.07±0.14 2.03±0.07 1.99±0.07 1.93±0.09
BUPA Liver 2.04±0.09 2.01±0.04 1.99±0.08 1.97±0.05
Pima Indians 2.06±0.18 2.00±0.03 2.00±0.06 1.99±0.04

cross-validation. The numerical results show that the PASL
could label almost all the unlabeled data with high accuracy.

Based on the limited but informative estimated labeled data as

well as the original labeled data, we build the final classifier.

The results show that the final classifier achieves a competitive

performance.

V. CONCLUSION

We have proposed an PASL algorithm for semi-supervised

learning. Our method can achieve high accuracy rates on

both transductive learning (measured by training accuracy)

and inductive learning (measured by test accuracy). The PASL
algorithm blends the concepts of PA and down-weighting into

our multi-view scheme. In PASL the reduced sets are chosen

as the views in the view selection process. Unlike other multi-

view methods, PASL selects views in the feature space rather

than in the input space. As a multi-view approach, our method

combines the concepts of co-training and consensus training.

In training procedure, we use the idea of down-weighting to

retrain the student’s classifier by the given initial labeled and

guessed labeled points. Based on the idea of PA algorithm, we

would like the new retrained classifier to be held as near as

possible to the original classifier produced by the initial labeled

data. The PASL algorithm alternately labels the unlabeled data

based on classifiers on hold and built the classifiers based

on the original labeled data, and the guessed labeled data

obtained from previous classification results. We evaluated the

performance of PASL on four publicly available data sets. The

numerical results show that the algorithm only uses a small

portion of the labeled training data points, yet it achieves

comparable cross validation accuracy to the algorithm that uses

all the labeled data points.
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